





#### OSTEONECROSI DELLE OSSA MASCELLARI (ONJ) DA BIFOSFONATI E ALTRI FARMACI: PREVENZIONE, DIAGNOSI, FARMACOVIGILANZA, TRATTAMENTO – UPDATE 2014

#### **ONJ: PAST AND FUTURE**

# **GENVABO** study:

#### preliminary GWAs result and phenotypic analyses on time to event and risk factors

<u>Gen</u>etic <u>Va</u>riants as <u>B</u>iomarkers of jaw <u>O</u>steonecrosis associated with bisphosphonates







## **Polly Pok-Lam FUNG**

BDS (Hons) HKU, MSc Oral Medicine (Distinction) UCL UCL Grand Challenge PhD Student







# Outline

- I. GENVABO 2014 update
- II. 2 parts: genetic,

phenotypic analyses

III. Past, Present, Future

Past: background

Present: GENVABO

Future: further work, impact

on clinical and research work



**Structure:** GWAS: Past – Present – Future Time to event: Past – Present – Future





## **GWAS – Past – Scenario**

- First GWAS in BONJ in 2008
  - *N*=22
  - rs1934951, CYP2C8
  - $p = 1.07 \times 10^{-6}$
- Second GWAS in 2010
  - *N*=30
  - rs17024608, *RBMS3*
  - $p = 7.4 \times 10^{-8}$

#### Brief report

Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 *CYP2C8* in multiple myeloma: a genome-wide single nucleotide polymorphism analysis

\*Maria E. Sarasquete,1 \*Ramon García-Sanz,1-3 Luis Marín,1 Miguel Alcoceba,1 Maria C. Chillón,1-2 Ana Balanzategui,1 Carlos Santamaria,1 Laura Rosiñol,<sup>3</sup> Javier de la Rubia,<sup>3</sup> Miguel T. Hernandez,<sup>3</sup> Inmaculada Garcia-Navarro,<sup>3</sup> Juan J. Lahuerta,<sup>9</sup> Marcos González,1-<sup>3</sup> and Jesus F. San Miguel<sup>1-3</sup>



Genomewide Pharmacogenetics of Bisphosphonate-Induced Osteonecrosis of the Jaw: The Role of *RBMS3* 

PAOLA NICOLETTI,<sup>a</sup> VASSILIKI M. CARTSOS,<sup>d</sup> PENELOPE K. PALASKA,<sup>d</sup> YUFENG SHEN,<sup>a,b</sup> ARIS FLORATOS,<sup>a,b</sup> Athanasios I. Zavras<sup>c,e,f</sup>

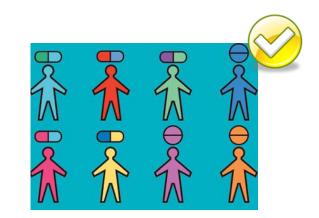
Why do we study genetics in BONJ?
 Why GWAS?
 Why do we need another GWAS?





## GWAS – Why do we study genetics in BONJ?

- "One size fits all"
- Personalised medicine
- Pharmacogenomics
  - Study of variations of DNA and RNA characteristics as related to drug response




U.S. Food and Drug Administration Protecting and Promoting *Your* Health

The most effective and safest drug at the right time and right dose









# 

# **GWAS – Why study genetics? Personalised Medicine.**







Latest advice for medicines users

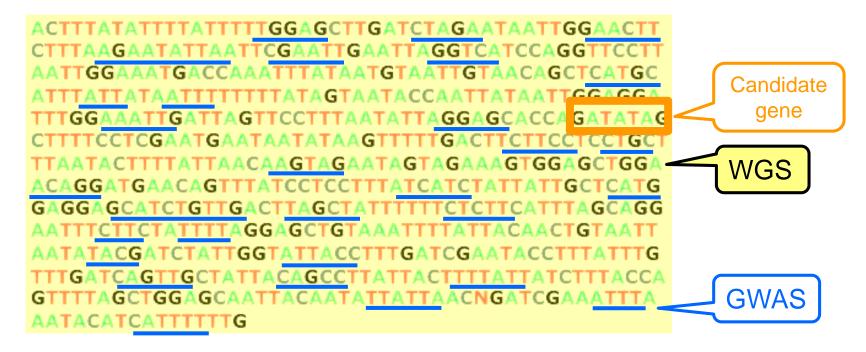
# Carbamazepine: genetic testing recommended in some Asian populations

Article date: April 2008



#### Summary

The risk of carbamazepine-induced Stevens-Johnson syndrome is strongly associated with presence of the *HLA-B\*1502* allele in individuals of Han Chinese, Hong Kong Chinese, or Thai origin. It is recommended that these individuals should be screened for *HLA-B\*1502* before prescription of carbamazepine. Those who test positive should not start carbamazepine unless the benefits clearly outweigh the risks of Stevens-Johnson syndrome






# **GWAS – Why GWAS?**

- Candidate gene study
- Whole genome sequencing: ~10M SNPs
- Genomewide association study: 0.5-1M SNPs









# **GWAS – Why GENVABO?**

- First GWAS in BONJ in 2008
  - *N*=22
  - 500,568 SNPs screened
  - rs1934951, *CYP2C8*
  - $p = 1.07 \times 10^{-6}$
- Second GWAS in 2010
  - *N*=30
  - 731,442 SNPs screened
  - rs17024608, *RBMS3*
  - $p = 7.4 \times 10^{-8}$
- GENVABO
  - Larger cohort: N=358
  - More SNPs screened: 951,117

#### Genomewide significance level: $p < 5 \times 10^{-8}$

#### Brief report

Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 *CYP2C8* in multiple myeloma: a genome-wide single nucleotide polymorphism analysis

\*Maria E. Sarasquete,1 \*Ramon García-Sanz,1-3 Luis Marín,1 Miguel Alcoceba,1 Maria C. Chillón,1-2 Ana Balanzategui,1 Carlos Santamaria,1 Laura Rosiñol,<sup>3</sup> Javier de la Rubia,<sup>3</sup> Miguel T. Hernandez,<sup>3</sup> Inmaculada Garcia-Navarro,<sup>3</sup> Juan J. Lahuerta,<sup>3</sup> Marcos González,1-3 and Jesus F. San Miguel<sup>1-3</sup>



Symptom Management and Supportive Care

Genomewide Pharmacogenetics of Bisphosphonate-Induced Osteonecrosis of the Jaw: The Role of *RBMS3* 

PAOLA NICOLETTI,<sup>a</sup> VASSILIKI M. CARTSOS,<sup>d</sup> PENELOPE K. PALASKA,<sup>d</sup> YUFENG SHEN,<sup>a,b</sup> ARIS FLORATOS,<sup>a,b</sup> Athanasios I. Zavras<sup>ce,f</sup>



# **GENVABO**

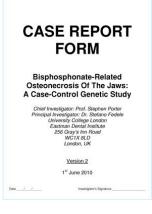
Genetic Variants as Biomarkers of

jaw **O**steonecrosis associated with bisphosphonates

- Genome-wide association study (GWAS)








# **GWAS – Present – GENVABO**

#### Automated DNA extraction

- QIAamp DNA Blood Mini Kit
- Chemagic Magnetic Separation
- Genotyping
  - HumanOmniExpressExome-8v1 (Illumina Infinium II)
- Statistical analysis
  - Logistic regression and Fisher's Exact test, PLINK

ONJ/Healthy = SNP1 + SNP2 + SNP3.....



Patient Initials: Protocol Perio-09-41 Subject # : -















T BERELLER BURNEL







### **GWAS – Present – GENVABO**







# **GWAS – Future – GENVABO validation, replication**

#### Validation

Test the imputed SNPs in the same discovery cohort



#### Replication

Test the SNPs in a different yet phenotypically similar cohort







# **GENVABO – GWAS**

- I. GENVABO is the largest GWAS to date in BONJ
- **II. GENVABO identified the first GW significant SNP**
- III. Validation is ongoing; new funding for replication; hopeful of personalised medicine in BONJ











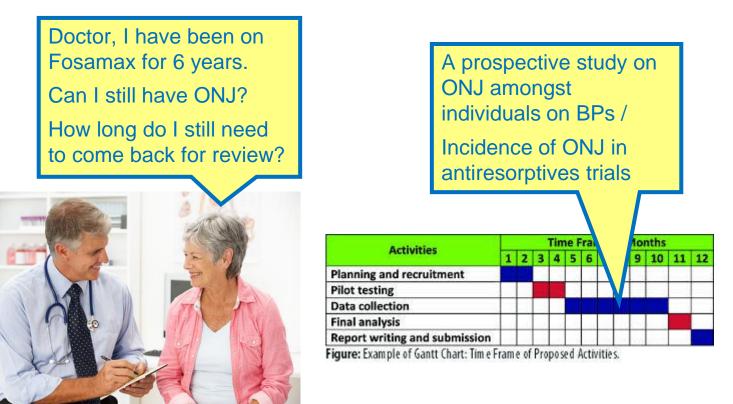
# Time to BONJ<sup>\*</sup> Diagnosis: Results from a Large Multicentre Study

\* Bisphosphonate-associated osteonecrosis of the jaw

**Fung PPL 1**, Petrie A 1, Porter SR 1, Fedele S <sup>1,2</sup> on behalf of the GENVABO Consortium

University College London/University College London Hospital Eastman Dental Institute and Hospital
 NIHR University College London Hospitals Biomedical Research Centre

UCLH/UCL Comprehensive Biomedical Research Centre Translational research for patient benefit University College MES London Hospital



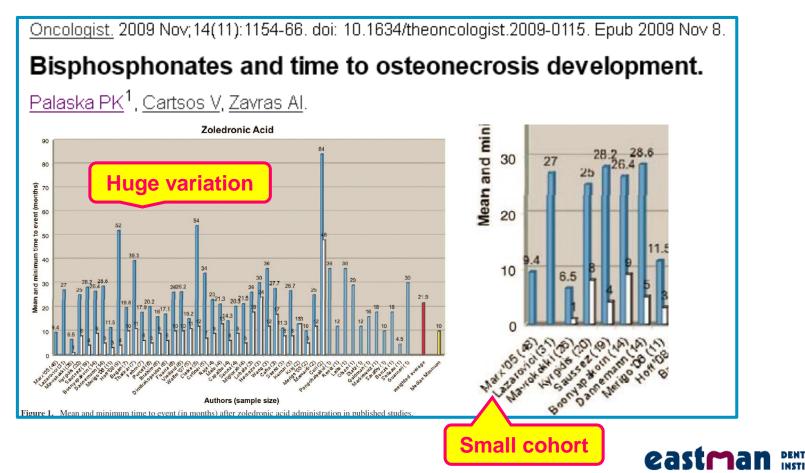







### **Time to event – Past – Scenario**




How long should we follow-up our patients?
 How long should be the study period?



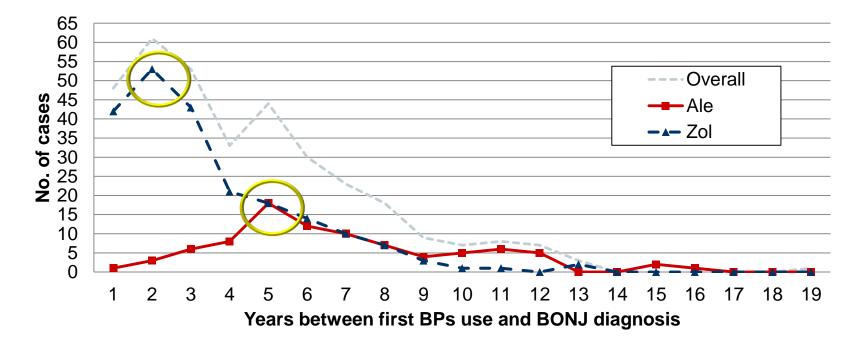


## **Time to event – Past – Previous work**

- Important to clinical vigilance and research design
- Lack of robust evidence



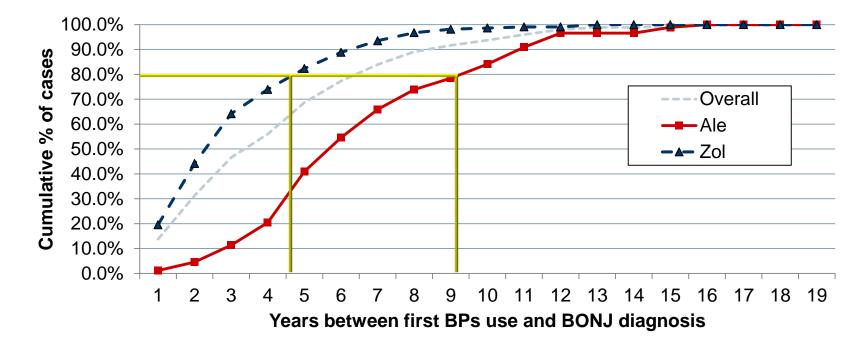



- Large, homogeneous cohort of 348 BONJ cases
- Well-defined time to BONJ: time elapsed between the initiation of bisphosphonates (BPs) therapy and <u>BONJ diagnosis</u>
- Median time to BONJ
  - Overall: median 39.5 months; 95% CI 34.0 to 47.0
  - Alendronate: median 69.5 months;
    95% CI 59.3 to 74.7 months
  - Zoledronate: median 26 months
    95% CI 23.0 to 29.8 months








#### Number of cases being diagnosed at different lengths of time



| Year, n        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----------------|----|----|----|----|----|----|----|----|---|----|----|----|----|----|----|
| Overall, N=348 | 48 | 61 | 53 | 33 | 44 | 30 | 23 | 18 | 9 | 7  | 8  | 7  | 3  | 0  | 2  |
| Ale, n=88      | 1  | 3  | 6  | 8  | 18 | 12 | 10 | 7  | 4 | 5  | 6  | 5  | 0  | 0  | 2  |
| Zol, n=215     | 42 | 53 | 43 | 21 | 18 | 14 | 10 | 7  | 3 | 1  | 1  | 0  | 2  | 0  | 0  |



#### Cumulative % of cases being diagnosed at different lengths of time

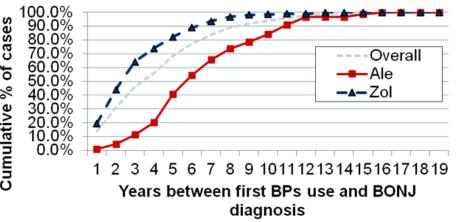


| Year, n    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Overall, % | 13.8 | 31.3 | 46.6 | 56.0 | 68.7 | 77.3 | 83.9 | 89.1 | 91.7 | 93.7 | 96.0 | 98.0 | 98.9  | 98.9  | 99.4  |
| Ale, %     | 1.1  | 4.5  | 11.4 | 20.5 | 40.9 | 54.5 | 65.9 | 73.9 | 78.4 | 84.1 | 90.9 | 96.6 | 96.6  | 96.6  | 98.9  |
| Zol, %     | 19.5 | 44.2 | 64.2 | 74.0 | 82.3 | 88.8 | 93.5 | 96.7 | 98.1 | 98.6 | 99.1 | 99.1 | 100.0 | 100.0 | 100.0 |

Factors for time, not disease risk

#### Secondary outcome

Association between time (outcome variable) and 13 potential risk factors (explanatory variables)


|      | Inivariable GEE             | Multivariable GEE linear regression  |                         |            |         |       |         |  |  |  |  |  |  |  |
|------|-----------------------------|--------------------------------------|-------------------------|------------|---------|-------|---------|--|--|--|--|--|--|--|
|      | near regression<br>Variable | Variable                             | Adjusted<br>Coefficient | 95         | p-value |       |         |  |  |  |  |  |  |  |
| 1    | Age                         | Gender (M=0, F=1)                    | -0.75                   | -10.90     | to      | 9.41  | 0.885   |  |  |  |  |  |  |  |
| 2    | Gender*<br>Underlying       | Underlying disease                   |                         | erence: Mu | ltiple  | •     |         |  |  |  |  |  |  |  |
| 0    | disease*                    | Osteoporosis                         | 14.56                   | -2.87      | to      | 31.99 | 0.102   |  |  |  |  |  |  |  |
| 4    | BPs type*                   | Metastatic breast cancer             | 6.21                    | -4.26      | to      | 16.67 | 0.245   |  |  |  |  |  |  |  |
| 5    | Smoking                     | Metastatic prostate cancer           | -8.66                   | -22.16     | to      | 4.85  | 0.209   |  |  |  |  |  |  |  |
| 6    | Diabetes                    | Other cancers                        | -4.13                   | -17.90     | to      | 9.63  | 0.556   |  |  |  |  |  |  |  |
| 7    | Systemic steroids           | Other benign diseases                | -10.96                  | -57.02     | to      | 35.09 | 0.641   |  |  |  |  |  |  |  |
| 8    | Antiangiogenics*            | BPs type                             | Reference: Zoledronate  |            |         |       |         |  |  |  |  |  |  |  |
| 9    | Antiresorptives             | Risedronate                          | 60.22                   | 26.24      | to      | 94.20 | 0.001*  |  |  |  |  |  |  |  |
| 10   | Dentoalveolar<br>surgery*   | Ibandronate                          | -16.79                  | -35.76     | to      | 2.19  | 0.083   |  |  |  |  |  |  |  |
| 11   | Denture*                    | Alendronate                          | 25.75                   | 9.45       | to      | 42.05 | 0.002*  |  |  |  |  |  |  |  |
| 12   | BONJ type                   | Pamidronate                          | 33.06                   | 18.53      | to      | 47.59 | <0.001* |  |  |  |  |  |  |  |
| 13   | BONJ site                   | Clodronate, Etidronate               | 35.24                   | 6.86       | to      | 63.63 | 0.015*  |  |  |  |  |  |  |  |
| *p<0 | 0.1                         | Antiangiogenics                      | -6.90                   | -16.98     | to      | 3.17  | 0.179   |  |  |  |  |  |  |  |
|      |                             | Dentoalveolar surgery                | 5.33                    | -1.35      | to      | 12.01 | 0.118   |  |  |  |  |  |  |  |
|      |                             | Denture                              | 5.65                    | -2.57      | to      | 13.87 | 0.178   |  |  |  |  |  |  |  |
|      |                             | *significant results, <i>p</i> <0.05 |                         |            |         |       |         |  |  |  |  |  |  |  |



### **Time to event – Future – Clinical**

ONJ still possible, especially accurate testing like genetics still unavailable; dental review for >4-6 years advised. Doctor, I have been on Fosamax for 6 years. Can I still have ONJ? How long do I still need to come back for review?





| Year, n    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Overall, % | 13.8 | 31.3 | 46.6 | 56.0 | 68.7 | 77.3 | 83.9 | 89.1 | 91.7 | 93.7 | 96.0 | 98.0 | 98.9  | 98.9  | 99.4  |
| Ale, %     | 1.1  | 4.5  | 11.4 | 20.5 | 40.9 | 54.5 | 65.9 | 73.9 | 78.4 | 84.1 | 90.9 | 96.6 | 96.6  | 96.6  | 98.9  |
| Zol, %     | 19.5 | 44.2 | 64.2 | 74.0 | 82.3 | 88.8 | 93.5 | 96.7 | 98.1 | 98.6 | 99.1 | 99.1 | 100.0 | 100.0 | 100.0 |



### **Time to event – Future – Research**

Ada Braun<sup>q</sup>, Susie Jun<sup>q</sup>

Osteoporos Int. 2014 Mar: 25(3): 1131-9. doi: 10.1007/s00198-013-2575-3. Epub 2013 Dec 17. Risk of osteonecrosis in patients taking bisphosphonates for prevention of osteoporosis: a systematic review and meta-analysis. Lee SH<sup>1</sup>, Chang SS, Lee M, Chan RC, Lee CC. Alendronate: lute risks. Except for the study by Lapi, all included studies had 7 years: 65.9% a follow-up duration of more than 3 years (median 7 years, range 3-12 years; see Table 1), which is sufficient for most **Zoledronate:** cases to be observed. When applying the summary relative risk 3 years: 64.2% European Journal of Cancer (2012) 48, 3082-3092 **ONJ incidence 1.3%** Available at www.sciencedirect.com EJC SciVerse ScienceDirect 100.0% 90.0% Cumulative % of cases journal homepage: www.ejcancer.info ELSEVIER 80.0% 70.0% ----Overall 60.0% -----Ale 50.0% –⊿– Zol 40.0% Superiority of denosumab to zoledronic acid for prevention 1 30.0% of skeletal-related events: A combined analysis of 3 20.0% pivotal, randomised, phase 3 trials 🛱 10.0% 0.0% Allan Lipton<sup>a,\*</sup>, Karim Fizazi<sup>b</sup>, Alison T. Stopeck<sup>c</sup>, David H. Henry<sup>d</sup>, 1 2 3 4 5 6 7 8 9 10111213141516171819 Janet E. Brown<sup>e</sup>, Denise A. Yardley<sup>f</sup>, Gary E. Richardson<sup>g</sup>, Salvatore Siena<sup>h</sup>, Years between first BPs use and BONJ Pablo Maroto<sup>i</sup>, Michael Clemens<sup>j</sup>, Boris Bilynskyy<sup>k</sup>, Veena Charu<sup>1</sup>, Philippe Beuzeboc<sup>m</sup>, Michael Rader<sup>n</sup>, Maria Viniegra<sup>o</sup>, Fred Saad<sup>p</sup>, Chunlei Ke<sup>q</sup>, diagnosis

| Year, n    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Overall, % | 13.8 | 31.3 | 46.6 | 56.0 | 68.7 | 77.3 | 83.9 | 89.1 | 91.7 | 93.7 | 96.0 | 98.0 | 98.9  | 98.9  | 99.4  |
| Ale, %     | 1.1  | 4.5  | 11.4 | 20.5 | 40.9 | 54.5 | 65.9 | 73.9 | 78.4 | 84.1 | 90.9 | 96.6 | 96.6  | 96.6  | 98.9  |
| Zol, %     | 19.5 | 44.2 | 64.2 | 74.0 | 82.3 | 88.8 | 93.5 | 96.7 | 98.1 | 98.6 | 99.1 | 99.1 | 100.0 | 100.0 | 100.0 |



# **GENVABO** – Time to event

- I. At least 10 years required to capture the majority of ONJ cases amongst alendronate patients
- II. At least 5 years required to capture the majority of ONJ cases amongst zoledronate patients



